Skip to contents

Generates tree map to visualize segments.

Usage

rfm_plot_segment(
  table,
  metric = "customers",
  interactive = FALSE,
  print_plot = TRUE
)

Arguments

table

An object of class rfm_segment_summary.

metric

Metric to be visualized. Defaults to "customers". Valid values are:

  • "customers"

  • "orders"

  • "revenue"

interactive

If TRUE, uses plotly as the visualization engine. If FALSE, uses ggplot2.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

Examples

# analysis date
analysis_date <- as.Date('2006-12-31')

# generate rfm score
rfm_result <- rfm_table_order(rfm_data_orders, customer_id, order_date,
revenue, analysis_date)

# segment names
segment_names <- c("Champions", "Potential Loyalist", "Loyal Customers",
                   "Promising", "New Customers", "Can't Lose Them",
                   "At Risk", "Need Attention", "About To Sleep", "Lost")

# segment intervals
recency_lower <-   c(5, 3, 2, 3, 4, 1, 1, 1, 2, 1)
recency_upper <-   c(5, 5, 4, 4, 5, 2, 2, 3, 3, 1)
frequency_lower <- c(5, 3, 2, 1, 1, 3, 2, 3, 1, 1)
frequency_upper <- c(5, 5, 4, 3, 3, 4, 5, 5, 3, 5)
monetary_lower <-  c(5, 2, 2, 3, 1, 4, 4, 3, 1, 1)
monetary_upper <-  c(5, 5, 4, 5, 5, 5, 5, 5, 4, 5)

# generate segments
segments <- rfm_segment(rfm_result, segment_names, recency_lower,
recency_upper, frequency_lower, frequency_upper, monetary_lower,
monetary_upper)

# segment summary
segment_overview <- rfm_segment_summary(segments)

# treemaps
# default metric is customers
rfm_plot_segment(segment_overview)


# treemap of orders
rfm_plot_segment(segment_overview, metric = "orders")


# plotly
rfm_plot_segment(segment_overview, metric = "revenue", interactive = TRUE)