Skip to contents

Generate scatter plots to examine the relationship between recency, frequency and monetary value.

Usage

rfm_plot_segment_scatter(
  segments,
  x = "monetary",
  y = "recency",
  plot_title = NULL,
  legend_title = NULL,
  xaxis_label = NULL,
  yaxis_label = NULL,
  interactive = FALSE,
  animate = FALSE,
  print_plot = TRUE
)

Arguments

segments

Output from rfm_segment.

x

Metric to be represented on X axis.

y

Metric to be represented on Y axis.

plot_title

Title of the plot.

legend_title

Title of the plot legend.

xaxis_label

X axis label.

yaxis_label

Y axis label.

interactive

If TRUE, uses plotly as the visualization engine. If FALSE, uses ggplot2.

animate

If TRUE, animates the bars. Defaults to FALSE.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

Value

Scatter plot.

Examples

# analysis date
analysis_date <- as.Date('2006-12-31')

# generate rfm score
rfm_result <- rfm_table_order(rfm_data_orders, customer_id, order_date,
revenue, analysis_date)

# segment names
segment_names <- c("Champions", "Potential Loyalist", "Loyal Customers",
                   "Promising", "New Customers", "Can't Lose Them",
                   "At Risk", "Need Attention", "About To Sleep", "Lost")

# segment intervals
recency_lower <-   c(5, 3, 2, 3, 4, 1, 1, 1, 2, 1)
recency_upper <-   c(5, 5, 4, 4, 5, 2, 2, 3, 3, 1)
frequency_lower <- c(5, 3, 2, 1, 1, 3, 2, 3, 1, 1)
frequency_upper <- c(5, 5, 4, 3, 3, 4, 5, 5, 3, 5)
monetary_lower <-  c(5, 2, 2, 3, 1, 4, 4, 3, 1, 1)
monetary_upper <-  c(5, 5, 4, 5, 5, 5, 5, 5, 4, 5)

# generate segments
segments <- rfm_segment(rfm_result, segment_names, recency_lower,
recency_upper, frequency_lower, frequency_upper, monetary_lower,
monetary_upper)

# visualize
# ggplot2
rfm_plot_segment_scatter(segments, "monetary", "recency")


# plotly
rfm_plot_segment_scatter(segments, "monetary", "recency", interactive = TRUE)